
6- Logic circuits (networks).
 Logic gates can be combined together to produce more complex logic

circuits (networks).

 Note: The output from a logic circuit (network) is checked by
producing a truth table.

 Two different types of problem are considered here:

 – drawing the truth table from a given logic circuit (network)

– designing a logic circuit (ne twork) from a given problem and testing
it by

 also drawing a truth table.

 -First part

There are 3 inputs; thus we must have 23 (i.e. 8) possible
combinations of 1s

and 0s. To find the values (outputs) at points P and Q, it is necessary to
consider the truth tables for the NOR gate (output P) and the AND gate

(output Q) i.e.
P = A NOR B

Q = B AND C
We thus get:

-Second part
There are 8 values from P and Q which form the inputs to the last OR

gate.

Hence we get X = P OR Q which gives the following truth table:

Which now gives us the final truth table for the logic circuit given at the start
of the example:

Example 2

Consider the following problem.
A system used 3 switches A, B and C; a combination of switches

determines
whether an alarm, X, sounds:

If switch A or switch B are in the ON position and if switch C is in the

OFF position then a signal to sound an alarm, X is produced. It is possible to
convert this problem into a logic statement.

So we get:

If (A = 1 OR B = 1) AND (C = NOT 1) then X =

1

 The first part is two The output from the The third part is

 inputs (A and B) first part and the one input (C) which is

 joined by an OR third part are joined put through a NOT gate

 gate by an AND gate

So we get the following logic circuit (network):

This gives the following truth table:

Home works :

Qutation1: A manufacturing process is controlled by a built in logic circuit
which is made up of AND, OR and NOT gates only. The process receives a

STOP signal (i.e. X = 1) depending on certain conditions, shown in the
following table:

A stop signal (X = 1) occurs when:

either Volume, V > 1000 litres and Speed, S <= 15 m/s
or Temperature, T <= 750؛C and Speed, S > 15 m/s

Draw the logic circuit and truth table to show all the possible

situations
when the stop signal could be received.

Qutation2:
 produce truth tables from the given logic circuits (networks). Remember, if there are two

inputs then there will be 4 possible outputs; if there are three inputs then there will be 8

possible outputs.

 Important Notes:

1-XOR Notes:

 The logic function implemented by a 2-input Ex-OR is given as either: "

BABABAQ ..)( " , which mean “A OR B but NOT both” will give an output at Q.

 in general, an Ex-OR gate will give an output value of logic “1” ONLY when there are
an ODD number of 1’s on the inputs to the gate, if the two numbers are equal, the output
is “1”.

 Then an Ex-OR function with more than two inputs is called an “odd function” or
modulo-2-sum (Mod-2-SUM), not an Ex-OR.

 This description can be expanded to apply to any number of individual inputs as shown
below for a 3-input Ex-OR gate.

Symbol Truth Table

3-input Ex-OR Gate

C B A Q

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Boolean Expression Q = A  B  C “Any ODD Number of Inputs” gives Q

2-XNOR Notes :

 The logic function implemented by a 2-input Ex-NOR gate is given as

BABABAQ ..)( ,which mean “when both A AND B are the SAME” will

give an output at Q.

 In general, an Exclusive-NOR gate will give an output value of logic “1” ONLY
when there are an EVEN number of 1’s on the inputs to the gate (the inverse of
the Ex-OR gate) except when all its inputs are “LOW” or "0".

 Then an Ex-NOR function with more than two inputs is called an “even
function” or modulo-2-sum (Mod-2-SUM), not an Ex-NOR.

3-Digital Logic Gates Summary
 The following logic gates truth table compares the logical functions of the 2-input logic

gates .

3- Using inverters to Convert Gates
 Frequently it is convenient to convert a basic gate such as an AND , OR , NAND ,

or NOR to another logic function . this can be done easily with the use of inverters

(NOT gate). The following chart is a handy guide for converting any given gate to

any other logic function.

Invert

outputs

AND TO NAND

NAND TO AND

 `
OR TO NOR

NOR TO OR

Inputs Truth Table Outputs For Each Gate

A B AND NAND OR NOR EX-OR EX-NOR

0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 0 1 0 0 1

Invert

inputs

AND TO NOR

NOR TO AND

NAND TO OR

OR TO NAND

Invert

inputs

and

outputs

AND TO OR

OR TO AND

NOR TO NAND

NAND TO NOR

Home work:

 write the Truth table for each case in the table above.

6-Boolean Algebra

This section describes various mathematic laws of Boolean algebra . Boolean
Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary
numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean algebra
was invented by George Boole in 1854. variable , complement and literal are terms used
in Boolean Algebra .

A variable : is a symbol used to represent an action , a condition , or data. Any
single variable can have only a 1 or a 0 value.

Complement: is the inverse of a variable and is indicated by a bar over the

variable (overbar) .for example , the complement of A is A .

A Literal: is a variable or the complement of a variable.

+ Rule in Boolean algebra
Following are the important rules used in Boolean algebra.
 Variable used can have only two values. Binary 1 for HIGH and Binary 0 for

LOW.

 Complement of a variable is represented by an over bar (-). Thus complement of

 variable B is represented as . Thus if B = 0 then B = 1 and B = 1 then B = 0.

 ORing of the variables is represented by a plus (+) sign between them. For

example
 ORing of A, B, C is represented as A + B + C. its also equivalent to the OR
operation as
 illustrated as follows :

 Logical ANDing of the two or more variable is represented by writing a dot

between
 them such as A.B.C. Sometime the dot may be omitted like ABC. its also
equivalent to
 the and operation as illustrated as follows :

 +Boolean Laws
There are six types of Boolean Laws.

1- COMMUTATIVE LAW
Any binary operation which satisfies the following expression is referred to as

commutative operation

(i) A . B = B .A (ii) A +B = B + A

Commutative law states that changing the sequence of the variables does not have
any effect on the output of a logic circuit. Remember, Boolean Algebra as applied
to logic circuits ,the commutative law can applied to OR and AND gate makes no
difference , as show in next figures.

 2- ASSOCIATIVE LAW
 This law states that the order in which the logic operations are performed is

irrelevant as their effect is the same.

(i) (A . B) .C = A. (B .C) (ii) (A +B)+ C = A +(B +C)

 The follows figures show how to applied the associative low to 2-input OR gates and 2-input
And
 gates.

 A + (B + C)=(A +B) +C A(BC) = (AB)C

 3- DISTRIBUTIVE LAW
Distributive law states the following condition

A . (B+ C) = A.B + A.C

The follows figures show how to applied the distributive low to 2-input

OR gates and 2-input And gates.

 Where the symbol  mean "equivalent to"

 Rules of Boolean Algebra
 The following table lists the 12 basic rules that are useful in manipulating and simplifying
Boolean expressions .Rules 1 through 9 will be viewed in terms of their application to logic
gates. Rules 10 through 12 will be derived in term of the simpler rules and law previously
discussed.

No. Rule No. Rule

1 A +0 =A 7 A .A = A

2 A + 1= 1 8 A. A = 0

3 A . 0=0 9 A = A

4 A .1 = A 10 A +AB =A

5 A +A= A 11 A + A B=A +B

6 A + A =1 12 (A+B)(A+C)=A+BC

 Notes: A ,B or C can represent a single variable or a combination of variables

 Rule 1 : A + 0 = A (Identity Law)
 The variable ORed with 0 is always equal to the variable . This rule is
illustrated in the following Figure , where the lower input is fixed at 0.

 X=A+0=A

 Rule 2 : A + 1 = 1 (NULL Elements Law)
 A variable ORed with 1 is always equal to 1. This rule is illustrated in the following
Figure , where the lower input is fixed at 1.

 X=A+1=1

 Rule 3 : A . 0 = 0 (NULL Elements Law)
 A variable ANDed with 0 is always equal to 0. This rule is illustrated in the
following Figure , where the lower input is fixed at 0.

 X=A . 0=0

 Rule 4 : A .1 = A (Identity Law)
 A variable ANDed with 1 is always equal to the variable . This rule is illustrated in
the following Figure , where the lower input is fixed at 1.

X=A . 1=A

 Rule 5 : A + A= A (Idempotent Law)
 A variable ORed with itself is always equal to the variable . This rule is illustrated
in the following Figure , where both inputs are the same variable .

X=A +A=A

 Rule 6 : A + A = 1
 A variable ORed with its complement is always equal to 1. This rule is illustrated
in the following Figure , where one input is the complement pf the other.

X=A + A =1

 Rule 7: A .A = A (Idempotent Law)
 A variable Anded with itself is always equal to the variable . This rule is illustrated
in the following Figure , where both inputs are the same variable .

X=A . A= A

 Rule 8: A . A = 0 (Complement Law)
 A variable ANDed with its complement is always equal to 0. This rule is illustrated
in the following Figure.

X=A . A =0

 Rule 9 : A = A (Complement Law)
 The double complement of a variable is always equal to the variable. This rule is
illustrated in the following Figure using inverters .

AA

 Rule 10: A + AB = A
 This rule can be proved by applying the distributive law , rule 2 and rule 4 as
follows:
 A + AB = A .1 + AB= A(1 + B) factoring (distributive law)
 =A . 1 Rule2 :(1 +b)=1
 =A Rule 4: A . 1 =A

 Note : the proof is shown in table bellow , which shows the troth table and the
resulting
 logic circuit simplification .
 1- troth table

A B AB A+AB

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

2- logic circuit

 Rule 11: A + A B= A + B
 This rule can be proved as follows :

 A + A B=(A +AB) + A B Rule 10: A= A+ AB

 = (AA +AB) + A B Rule 7 : A=AA

 =AA +AB +A A + A B Rule 8:adding A A =0

 =(A + A)(A + B) factoring

 = 1 . (A + B) Rule 6: A + A =1
 = A + B Rule4 :drop the 1

Note : the proof is shown in table bellow , which shows the troth table and the
resulting

 logic circuit simplification
1- troth table

A B A B A + A B A + B

0 0 0 0 0
0 1 1 1 1
1 0 0 1 1
1 1 0 1 1

2- logic circuit

Rule 12 : (A + B)(A + C) = A+BC
 This rule can be proved as follows :

(A + B)(A+ C) = AA +AC +AB +BC

 =A +AC +AB +BC
 =A(1+C) +AB +BC

 = A . 1 + AB +BC
 = A(1 +B) +BC
 = A +BC

Note : the proof is shown in table bellow , which shows the troth table and the
resulting

 logic circuit simplification

1- Troth Table
A B C A+B A+C (A+B) (A +C) BC A+BC

0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 1 0 1
1 0 1 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

 1- Logic Circuit

 +Important Boolean Theorems
Following are few important Boolean functions and theorems.

 Boolean Expression/Function
Boolean algebra deals with binary variables and logic operation. A Boolean

Function is described by an algebraic expression called Boolean expression
which consists of binary variables, the constants 0 and 1 and the logic operation
symbols. Consider the following example

Here the left side of the equation represents the output Y. So we can state equation

no. 1

Truth Table Formation
A truth table represents a table having all combinations of inputs and their

corresponding result. It is possible to convert the switching equation into a truth table.
For example consider the following switching equation.

The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table for this

equation is shown by Table (a). The number of rows in the truth table is 2n where n is the
number of input variables (n=3 for the given equation). Hence there are 23 = 8 possible
input combination of inputs.

De Morgan's Theorems
The two theorems suggested by De-Morgan which are extremely useful in

Boolean Algebra are as following.

 +Theorem 1

 The left hand side (LHS) of this theorem represents a NAND gate with input A
and B where the right hand side (RHS) of the theorem represents an OR gate
with inverted inputs.

 This OR gate is called as Bubbled OR.

Table showing verification of the De-Morgan’s first theorem

+Theorem 2

 The LHS of this theorem represented a NOR gate with input A and B whereas the
RHS represented an AND gate with inverted inputs.

 This AND gate is called as Bubbled AND.

Table showing verification of the De-Morgan’s second theorem

Example : Apply DemMorgan's theorems to the following expression :

ZYXZYX

ZYXXYZ





2

1

 That mean :

 

......................)(

......................

ZYXZYX

ZYXZBA





2

1

 Simplification Using Boolean Algebra

 Many times in the application of Boolean algebra , you have to reduce a particular

expression to its simplest form or change its form to a more convenient one to implement

the expression most efficiently .

the approach taken un this section is to use the basic laws , and theorems of Boolean

algebra to manipulate and simplify an expression .

This method depends on a thorough knowledge of Boolean algebra and considerable

practice in its application , not to mention a little ingenuity and cleverness.

