
6- Logic circuits (networks). 
     Logic gates can be combined together to produce more complex logic 

circuits (networks). 

 Note: The output from a logic circuit (network) is checked by 
producing a truth table. 
 

     Two different types of problem are considered here: 

 – drawing the truth table from a given logic circuit (network) 

– designing a logic circuit (ne twork) from a given problem and testing 
it by 

    also drawing a truth table. 
 

 
 

 -First part 

There are 3 inputs; thus we must have 23 (i.e. 8) possible 
combinations of 1s 

and 0s. To find the values (outputs) at points P and Q, it is necessary to 
consider the truth tables for the NOR gate (output P) and the AND gate 

(output Q) i.e. 
P = A NOR B 

Q = B AND C 
We thus get: 

 



 

-Second part 
There are 8 values from P and Q which form the inputs to the last OR 

gate. 

Hence we get X = P OR Q which gives the following truth table: 

 

Which now gives us the final truth table for the logic circuit given at the start 
of the example: 

 
 

Example 2 

Consider the following problem. 
A system used 3 switches A, B and C; a combination of switches 

determines 
whether an alarm, X, sounds: 

If switch A or switch B are in the ON position and if switch C is in the 

OFF position then a signal to sound an alarm, X is produced. It is possible to 
convert this problem into a logic statement. 

 
So we get: 

If (A = 1 OR B = 1)   AND    (C = NOT 1)    then X = 

1 

         The first part is two  The output from the   The third part is 

         inputs (A and B)   first part and the   one input (C) which is 

         joined by an OR   third part are joined   put through a NOT gate 

         gate             by an AND gate    



So we get the following logic circuit (network): 

 

 
 
This gives the following truth table: 

 
 
 

Home works : 

Qutation1: A manufacturing process is controlled by a built in logic circuit 
which is made up of AND, OR and NOT gates only. The process receives a 

STOP signal (i.e. X = 1) depending on certain conditions, shown in the 
following table: 

 

 
 

A stop signal (X = 1) occurs when: 



either Volume, V > 1000 litres and Speed, S <= 15 m/s 
or Temperature, T <= 750؛C and Speed, S > 15 m/s 

 
Draw the logic circuit and truth table to show all the possible 

situations 
when the stop signal could be received. 

 
Qutation2: 
   produce truth tables from the given logic circuits (networks). Remember, if there are two 

inputs then there will be 4 possible outputs; if there are three inputs then there will be 8 

possible outputs. 

 

 
 Important Notes: 

 

1-XOR Notes: 

 The logic function implemented by a 2-input Ex-OR is given as either: "

BABABAQ ..)(   " , which mean “A OR B but NOT both” will give an output at Q. 



 

 in general, an Ex-OR gate will give an output value of logic “1” ONLY when  there  are 
an ODD number of 1’s on the inputs to the gate, if the two numbers are equal, the output 
is “1”. 

 

 Then an Ex-OR function with more than two inputs is called an “odd function” or 
modulo-2-sum (Mod-2-SUM), not an Ex-OR.  

 

 This description can be expanded to apply to any number of individual inputs as shown 
below for a 3-input Ex-OR gate. 

 

 

Symbol Truth Table 

 

3-input Ex-OR Gate 

C B A Q 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Boolean Expression Q = A    B     C “Any ODD Number of Inputs” gives Q 

 

2-XNOR  Notes :  



 The logic function implemented by a 2-input Ex-NOR gate is given as

BABABAQ ..)(   ,which mean  “when both A AND B are the SAME” will 

give an output at Q.  

 In general, an Exclusive-NOR gate will give an output value of logic “1” ONLY 
when there are an EVEN number of 1’s on the inputs to the gate (the inverse of 
the Ex-OR gate) except when all its inputs are “LOW” or "0". 

 Then an Ex-NOR function with more than two inputs is called an “even 
function” or modulo-2-sum (Mod-2-SUM), not an Ex-NOR. 

3-Digital Logic Gates Summary 
          The following logic gates truth table compares the logical functions of the 2-input logic 

gates . 

 
  

 
  

 

 

 

  
 

 
 

3- Using inverters to Convert Gates 
   Frequently it is convenient to convert a basic gate such as an AND , OR , NAND , 

or  NOR to another logic function . this can be done easily with the use of inverters 

(NOT gate). The following chart is a handy guide for converting any given gate to 

any other logic function. 

Invert 

outputs 

      
AND TO NAND 

      
NAND TO AND 

   `  
OR TO NOR 

  
NOR TO OR 

Inputs Truth Table Outputs For Each Gate 

A B AND NAND OR NOR EX-OR EX-NOR 

0 0 0 1 0 1 0 1 

0 1 0 1 1 0 1 0 

1 0 0 1 1 0 1 0 

1 1 1 0 1 0 0 1 



Invert 

inputs 

       
AND TO NOR 

   
NOR TO AND 

    
NAND TO OR 

   
OR TO NAND 

Invert 

inputs 

and 

outputs 

 

 

AND TO OR 

 

 

OR TO AND 

 

 

NOR TO NAND 

 

 

NAND TO NOR 

 

Home work: 

      write the Truth table for each case in the table above. 

 

6-Boolean Algebra 



This section describes various mathematic laws of Boolean algebra . Boolean 
Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary 
numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean algebra 
was invented by George Boole in 1854.  variable , complement and literal are terms used 
in Boolean Algebra .  

A variable  : is a symbol used to represent an action , a condition , or data. Any  
single variable can have only a 1 or a 0 value. 

Complement: is the inverse of a variable and is indicated by a bar over the 

variable (overbar) .for example , the complement of  A is A  . 

A Literal: is a variable or the complement of a variable. 

 

+ Rule in Boolean algebra 
Following are the important rules used in Boolean algebra. 
 Variable used can have only two values. Binary 1 for HIGH and Binary 0 for 

LOW. 
 
 Complement of a variable is represented by an over bar (-). Thus complement of 

       variable B is represented as . Thus if B = 0 then B  = 1 and B = 1 then B = 0. 
 
 ORing of the variables is represented by a plus (+) sign between them. For 

example 
      ORing of A, B, C is represented as A + B + C. its also equivalent to the OR  
operation as 
       illustrated as follows : 

 

 
 
 Logical ANDing of the two or more variable is represented by writing a dot 

between 
      them such as A.B.C. Sometime the dot may be omitted like ABC. its also 
equivalent to  
     the and  operation as illustrated as follows : 

 
 

  +Boolean Laws 
There are six types of Boolean Laws. 



1- COMMUTATIVE LAW 
Any binary operation which satisfies the following expression is referred to as 

commutative operation 

(i) A . B = B .A     (ii) A +B = B + A 

 
Commutative law states that changing the sequence of the variables does not have 
any effect on the output of a logic circuit. Remember, Boolean Algebra as applied 
to logic circuits ,the commutative law can applied to OR and AND gate makes no 
difference , as show in next figures. 

 

  
 

 

         2-     ASSOCIATIVE LAW 
 This law states that the order in which the logic operations are performed is 

irrelevant as their  effect is the same. 
 

(i) (A . B ) .C = A. (B .C)      (ii) ( A +B )+ C = A +(B +C ) 

 
        The follows figures show how to applied the associative low to 2-input OR gates and 2-input 
And 
       gates. 
 

              A + (B + C)=(A +B ) +C  A(BC) = (AB)C   

                                         
 
 
      

  3-     DISTRIBUTIVE LAW 
Distributive law states the following condition 



A . ( B+ C) = A.B + A.C 

 

 
The follows figures show how to applied the distributive  low to 2-input 

OR gates and 2-input And gates. 
 

 

    Where the symbol  mean "equivalent to" 

 Rules of  Boolean Algebra  
 The following table lists the 12 basic rules that are useful in manipulating and simplifying 
Boolean expressions .Rules 1 through 9 will be viewed in terms of their application to logic 
gates. Rules 10 through 12 will be derived in term of the simpler rules and law  previously 
discussed. 
 

No. Rule No. Rule 

1 A +0 =A 7 A .A = A 

2 A + 1= 1 8 A. A  = 0 

3 A . 0=0 9 A  = A 

4 A .1 = A 10 A +AB =A 

5 A +A= A 11 A + A B=A +B 

6 A +  A  =1 12 (A+B)(A+C)=A+BC 

    Notes:  A ,B or C can represent a single variable or a combination of variables  
      

    Rule 1 : A + 0 = A (Identity Law) 
           The variable ORed with 0 is always equal to the variable . This rule is 
illustrated in the following Figure , where the lower input is fixed at 0. 

 
 X=A+0=A 

 
 Rule 2 : A + 1 = 1 (NULL Elements Law) 
  A variable ORed with 1 is always equal to 1. This rule is illustrated in the following 
Figure , where the lower input is fixed at 1. 



 
 X=A+1=1 

 
 
   Rule 3 : A . 0 = 0 (NULL Elements Law) 
 A variable ANDed with 0 is always equal to 0. This rule is illustrated in the 
following Figure , where the lower input is fixed at 0. 

 
 X=A . 0=0 

 
   Rule 4 : A .1 = A (Identity Law) 
 A variable ANDed with 1 is always equal to the variable . This rule is illustrated in 
the following Figure , where the lower input is fixed at 1. 

 
X=A . 1=A 

 
   Rule 5 : A + A= A (Idempotent  Law) 
 A variable ORed with itself is always equal to the variable . This rule is illustrated 
in the following Figure , where both inputs are  the same variable . 

 
X=A +A=A 

   Rule 6 : A + A  = 1   
 A variable ORed  with its complement is always  equal to 1. This rule is illustrated 
in the following Figure , where one input is the complement pf the other. 

 
X=A + A =1 

 
   Rule 7:  A .A  = A  (Idempotent  Law) 
 A variable Anded with itself is always equal to the variable . This rule is illustrated 
in the following Figure , where both inputs are  the same variable . 



 
X=A . A= A 

 
   Rule 8:  A .  A  = 0 (Complement   Law) 
  A variable ANDed with its complement is always equal to 0. This rule is illustrated 
in the following Figure. 

 
X=A . A =0 

 

   Rule 9 : A    =  A  (Complement   Law) 
  The double complement of a variable is always equal to the variable. This rule is 
illustrated in the following Figure using inverters . 

  

AA  

   Rule 10: A + AB = A 
 This rule can be proved by applying the distributive law , rule 2 and rule 4 as 
follows: 
                             A + AB = A .1  + AB= A(1 + B)       factoring (distributive law) 
                                           =A . 1                                     Rule2 :(1 +b)=1 
                                           =A                                         Rule 4: A . 1 =A 
 
 Note : the proof is shown in table bellow , which shows the troth table and the 
resulting  
                         logic circuit simplification . 
   1- troth table 

A B AB A+AB 

0 0 0 0 
0 1 0 0 
1 0 0 1 
1 1 1 1 

 
2- logic circuit 

 



 
 

   Rule 11: A + A B= A + B 
 This rule can be proved as follows : 

 A + A B=(A +AB)  + A B   Rule 10: A= A+ AB 

       = (AA +AB) + A B  Rule 7 : A=AA   

       =AA +AB +A A  + A B  Rule 8:adding  A A =0 

       =(A + A )(A + B)   factoring  

       = 1 . (A + B)   Rule 6: A + A  =1 
       = A + B                         Rule4 :drop the 1 
 

Note : the proof is shown in table bellow , which shows the troth table and the 
resulting  

              logic circuit simplification 
1- troth table  

A B A B A + A B A + B 

0 0 0 0 0 
0 1 1 1 1 
1 0 0 1 1 
1 1 0 1 1 

 

2- logic circuit 

 
    
Rule 12 : (A + B)(A + C) = A+BC 
 This rule can be proved as follows : 

(A + B)(A+ C) = AA +AC +AB +BC 

             =A +AC +AB +BC 
            =A(1+C) +AB +BC 



            = A . 1 + AB +BC 
            = A(1 +B) +BC 
            = A +BC 
 

Note : the proof is shown in table bellow , which shows the troth table and the 
resulting  

              logic circuit simplification 
 

1- Troth Table 
A B C A+B A+C (A+B) (A +C) BC A+BC 

0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 
0 1 0 1 0 0 0 0 
0 1 1 1 1 1 1 1 
1 0 0 1 1 1 0 1 
1 0 1 1 1 1 0 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 

 
 

  1- Logic Circuit 

 
 
 

 

 +Important Boolean Theorems 
Following are few important Boolean functions and theorems. 
 

 
 

 Boolean Expression/Function 
Boolean algebra deals with binary variables and logic operation. A Boolean 

Function is described by an algebraic expression called Boolean expression 
which consists of binary variables, the constants 0 and 1 and the logic operation 
symbols. Consider the following example 

 

 



 
Here the left side of the equation represents the output Y. So we can state equation 

no. 1 
 

 
 

Truth Table Formation 
A truth table represents a table having all combinations of inputs and their 

corresponding result. It is possible to convert the switching equation into a truth table. 
For example consider the following switching equation. 

 
 
The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table for this 

equation is shown by Table (a). The number of rows in the truth table is 2n where n is the 
number of input variables (n=3 for the given equation). Hence there are 23 = 8 possible 
input combination of inputs. 

 
 
 

De Morgan's Theorems 
The two theorems suggested by De-Morgan which are extremely useful in 

Boolean Algebra are as following. 
 

  +Theorem 1 

 

 The left hand side (LHS) of this theorem represents a NAND gate with input A 
and B where the right hand side (RHS) of the theorem represents an OR gate 
with inverted inputs. 

 This OR gate is called as Bubbled OR. 



 

Table showing verification of the De-Morgan’s first theorem 

 

+Theorem 2 

 

 The LHS of this theorem represented a NOR gate with input A and B whereas the 
RHS represented an AND gate with inverted inputs. 

 This AND gate is called as Bubbled AND. 

 

Table showing verification of the De-Morgan’s second theorem 



 

Example :  Apply DemMorgan's  theorems to the following expression : 

ZYXZYX

ZYXXYZ





2

1
 

 That mean : 

 
 
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......................

ZYXZYX

ZYXZBA
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2

1
 

 Simplification Using Boolean Algebra    

          Many times in the application of Boolean algebra , you have to reduce a particular 

expression to its simplest form or change its form to a more convenient one to implement 

the expression most efficiently . 

the approach taken un this section is to use the basic laws , and theorems of Boolean 

algebra to manipulate and simplify an expression .  

This method depends on a thorough knowledge  of Boolean algebra and considerable 

practice in its application , not to mention a little ingenuity and cleverness. 

   

 


